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Dynamic correlation for MCSCF wave functions: 
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A method is suggested which allows the inclusion of dynamic correlation into 
CASSCF calculations. An effective Coulomb hole potential is added to the 
HamiRonian. The potential has a simple form, which allows its implementation 
into existing LCAO programs using Gaussian integral packages. The param- 
eters appearing in the potential are determined by fitting to empirical valence 
correlation energies for first row atoms. Calculations of ionization energies 
and electron affinities show considerable improvement compared to the 
MCSCF values. Test calculations on three molecules give the following results, 
H2: re =0.745 (0.741)/~, De =4.62 (4.75) eV; N2: re = 1.099 (1.098) A, De = 
10.42 (9.91) eV; 02: re = 1.198 (1.207) A, De =4.73 (5.21) eV. Experimental 
values within parenthesis. 
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1. Introduction 

It is well known that inclusion of dynamic correlation effects is crucial for a 
proper quantitative description of the chemical bond. Using, for example, MCSCF 
theory it is possible to construct wave functions which give a qualitatively correct 
description of the electronic struture in a molecular system, also in situations 
where bond breaking or bond formation occurs. Such a theory can therefore 
overcome the obvious failures of the SCF theory. 

* On leave from: Institute of Organic Chemistry, Polish Academy of Sciences, PL-01-224 Warszawa 
42, ul. Kasprzaka 44, Poland. 
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The MCSCF theory accounts for the near-degeneracy effects in the wave function 
and in this way includes what could be called long range correlation [1]. The 
MCSCF wave function is characterized as a configurational expansion comprising 
a limited number of configurations, where the occupied (internal) orbitals nor- 
mally are obtained as bonding or anti-bonding combinations of atomic valence 
orbitals. Such wave functions allow, in contrast to the SCF method, for a proper 
description of  asymptotic limits of energy surfaces, degeneracy effects occurring 
along paths for chemical reactions, etc. Special cases, which are well treated by 
MCSCF theory, are the atomic near-degeneracy effects occurring in atoms like 
for example Be (2s2~ 2p2), where a two-configurational wave function accounts 
for 95% of the correlation energy of the 2s electron pair. 

The MCSCF method is today an established method for studying molecular 
systems. A special version is the complete active space (CAS) SCF method, where 
the selection of important configurations is avoided and it is only necessary to 
specify an internal orbital space [2, 3]. 

While the MCSCF method is capable of a qualitatively correct description of 
chemical binding, it does in general not give quantitatively accurate results. 
Dynamic, or short range, correlation effects account for a non-negligible fraction 
of bond energies. A good example is N2, where about 90% of the dissociation 
energy can be accounted for by MCSCF wave functions [2]. The remaining 
(0.8-0.9 eV) part can be attributed to short range correlation. In ab initio quantum 
chemistry these effects are normally accounted for by the configuration interaction 
(CI) method [4]. Often very accurate results can be obtained with the CI method, 
and it is today used in a variety of applications to different problems in chemistry 
and chemical physics. The CI method is, however, limited by the number of 
configurations that can be used in the expansion of the wave functions. Since 
the convergence is slow in this linear expansion method a very large nuriaber of 
terms is often needed. A good example is given by Cr2, where it has been estimated 
that more than 50 x 10 6 configurations would be needed in order to account for 
the multiple bonding in the molecule [5]. For larger systems containing many 
electrons the problem becomes even worse due to the increasing difficulties in 
handling the cluster effects. 

Dynamic correlation manifests itself in chemical bonds mainly as intra-atomic 
correlation. It is the ionic terms in the wave-function, which cannot be properly 
treated on a low level of theory (SCF or MCSCF). The energy of these terms 
are consequently too high and resulting binding energies become too small. 
Goodgame and Goddard [6] have introduced semiempirical correction terms in 
the two-electron integrals in order to reduce the error in describing atomic electron 
affinities. Applying these corrections in conjunctions with the GVB (generalized 
valence bond) method accurate potential curves were produced for some diatomic 
molecules, among them Cr2. The possibility to describe electron correlation 
empirically by reducing the values of the two-electron integrals was exploited 20 
years ago by Clementi [7], who modified the Coulomb integrals by breaking of 
integration at a given small interelectronic distance. This distance was estimated 
empirically for the He atom, and was then used in calculations on other atoms 
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and some molecules. The correlation energy computed in this way was in reason- 
able agreement with experimental evidence. 

Ruedenberg and coworkers have recently presented a method, where empirical 
intra-atomic correlation corrections are introduced by transforming a FORS wave 
function into a linear combination of antisymmetrized products of atomic state 
functions [8]. It is shown in their work that the intra-atomic correlation effects 
are to a large extent responsible for the errors obtained e.g. dissociation energies 
in calculations using the FORS (full valence CASSCF) model. 

The idea of treating dynamic correlation effects by reducing the Coulomb repul- 
sion term in the Hamiltonian also forms the basis for the present work, however, 
in a more advanced form than the one suggested by Clementi and Goodgame. 
An effective potential is added to the Hamiltonian, which should reflect the nature 
of the Coulomb hole. The modified Hamiltonian is used in conjunction with the 
CASSCF method. The wave function is thus allowed to relax in the presence of 
the correlation potential. This is an important aspect of the present method, in 
contrast to several previous attempts, where a correlation correction is added to 
the energy only, without affecting the wave function. Relaxation of the electron 
density due to dynamic correlation effects is, important in many systems, 
especially those which contain transition metal atoms [9]. Such relaxation is also 
included in the intra-atomic correlation corrected FORS model of Ruedenberg 
et al. [8]. 

2. The effective potential 

An effective correlation potential can formally be derived from a wave function 
of the form 

~0 = C4,, (1) 

where C is a correlation factor and 4~ is an approximate (for example SCF or 
CASSCF) wave function. Inserting (1) into the Schr6dinger equation leads after 
some simple manipulation to 

( ~ +  C-1[ Ys C])~b : Ed~, (2) 

where E is the exact energy corresponding to the Hamiltonian Ys The effective 
potential may thus be defined as 

~ =  C-~[~, C]. (3) 

Ess6n [10] has recently explored this form of the effective potential and suggests 
several forms, where in the most simple version Yea is given as a sum of delta 
functions. Blomqvist and Ess6n [11] have used this form to study electron 
correlation in some closed shell atoms. 

The major problem in using (3) to construct an effective potential is to find a 
suitable form of the correlation factor C. Some hints may be obtained from a 
method proposed by Colle and Salvetti [12, 13], who calculated the correlation 
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energy using reduced, second-order density matrices. The correlation factor used 
by them [12] fulfills the cusp condition and has the form 

C = I~ (1 - ~p(r,, vj)), (4) 
i<j  

where the two-electron function ~ is given as 

q~(ri, 5) = exp (-/32r~)(1 - f ( R ) ( 1  + ro/2)) , (5) 

where R =  ( r i+5 ) /2 .  The parameter/3 was assumed to be proportional to the 
third root of the local electron density p, /3 = q p ( R )  1/3. The coefficient q was 
determined empirically, and the function f (R )  was approximated. 

Substitution of the correlation factor (4) into (3) leads to a too complicated 
effective potential to be of practical use. Further simplifications are necessary. 
Under certain conditions f (R)  can be determined as a solution to a differential 
equation [14]. Assuming this function to depend only weakly on R it is straightfor- 
ward to show that for small inter-electronic distances the leading term of the 
effective potential has the form: 

C~eff ~- - -  ~ Z exp ( -  vr~)/ri;. (6) 
i<j  

The parameters ~z and v here have a simple interpretation as the depth (/~) and 
the radius (v -2) of the Coloumb hole generated by ~ The form (6) for 7/'en is 
especially convenient in conjunction with gaussian basis sets. Two-electron matrix 
elements may easily be generated by a slight modification of the gamma function 
in existing two-electron integral codes. Here the MOLECULE integral program 
has been used for this purpose [15]. 

Ideally the parameters/x, and v in (6) should be assumed to be functions of the 
local density p(R). This is obviously not possible if the relative simplicity of the 
potential is to be retained. In the atomic case/x and v have instead been chosen 
as functions of  the average electron density: 

It is clear that an ansatz for the effective potential in the simplified form given 
above can only approximately account for the dynamical correlation ettects. It 
can only be defended by showing its strength in applications. It is also necessarily 
empirical, since the parameters that determine ~ and v must be obtained from 
empirical estimates of the correlation energy in some test systems. The major 
virtue with the present approach lies in the effective Hamiltonian approach, which 
allows the approximate wave function to relax under the influence of the correla- 
tion term. The approach is in this sense similar to the work by Ruedenberg 
et al. [8] and Goodgame and Goddard [6], and in contrast to, for example the 
work by Colle and Salvetti [12, 13], where the correlation energy only is estimated 
from a fixed one-electron density which is normally computed from an SCF or 
small MCSCF wave function. It is also important to emphasize that only the 
short-range correlation ettects are to be treated through ~ .  Near degeneracy 
effects are included in r through the CASSCF procedure. 
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3. Determination of the parameters p and ~, 

In order to study the behaviour of  the correlation energy as a function of the 
parameters in the effective potential, a series of  full valence CASSCF calculations 
were performed on the first row atoms in their ground state. These calculations 
are single configurations for all atoms except Be (Is),  B(2P), and C(3p), where 
the 2s-2p near  degeneracy influences the wave function. The calculations did not 
include correlation of the ls-shell (except for He). For all systems studied the 
computed correlation energy could be fitted to the empirical value [16] for values 
o f / z  and v fulfilling a linear relation: 

/z =/Zo +pv,  (8) 

where the parameters/Zo and p are different for each electronic state of  an atom 
or ion. The accuracy of the linear dependence (8) is illustrated in Fig. 1, for the 
ground state atoms B-Ne.  The computed points in this figure corresponds to/z,  u 
values for which the calculated valence correlation energy agrees with the 
empirical value. The three points given for each atom are seen to lie on an almost 
perfectly straight line. The errors obtained in the correlation energies using 
equation (8) were less than 0.1% in the region v = 0.0-0.5. This error is consider- 
ably smaller than the errors obtained in the parametrization of/z  and v discussed 
below, and Eq. (8) could therefore be used as the basis for this parametrization. 
The fitted values of/Zo and p are given in Table 1 for the first row ground state 
atoms, and also for some ions. 

A functional dependence o f / z  
assumed in the form: 

],.L : XlpX2~ 

/] = ( X  3 -{- m x 4 ) p x 5  , 

and u on the average electron density fi was 

(9) 

(10) 

Fig. 1. The linear relation (8) illustrated 
for the atoms B-Ne.  @: /z, u values 
for which the computed correlation 
energy agrees with the empirical 
values. A: /z, u values obtained from 
Eqs. (9) and  (10) 
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Table 1. The parameters/x o and p in Eq. (8) 

Atom /x o p 

He(as) 0.0408 0.0463 
Be(as) 0.0076 0.1860 
B(2P) 0.0284 0.2306 
C+(2P) 0.0209 0.0879 
C(3p) 0.0245 0.1188 
C-(4S) 0.0256 0.1539 
N(4S) 0.0197 0.0652 
O+(4S) 0.0152 0.0317 
O(3p) 0.0165 0.0389 
O (2p) 0.0186 0.0515 
F(2p) 0.0140 0.025~ 
Ne(1S) 0.0119 0.0171 

The numbers x~ - x5 are treated as universal constants and are determined through 
a minimization of the least square errors of (8) for the ground state atoms: 

atoms 
S= E (Xlfixz--~,,i--pi(x3"~ Aix4)fixs) 2, (11)  

i 

where fii is the average density for atom i, computed using the initial CASSCF 
wave function. 

The parameter A occurring in (10) is introduced to account for the amount of 
correlation already introduced into the CASSCF wave function. In principle the 
radius of the Coulomb hole should go to zero when ~b approached the exact 
wave function. A should measure this by increasing when a more exact form of 
4~ is used. For SCF wave functions A is assumed to be zero. A simple form of 
this correlation parameter has been suggested by Colle and Salvetti [13]. Here 
we propose a slightly modified expression, which is easier to evaluate with the 
computational software available to us: 

A = ( A / C  - A s c v / C s c F )  2, (12) 

where A and C are obtained as 

A = a,f, =,2{('~(1)+ 15(2))P2(1, 1'; 2, 2')} 1 = 1 ' 2 = 2 '  d V  (13) 

and 

C = f P2(1, 1, 1, 1) dV. (14) 

As shown by Colle and Salvetti, the integrand in (13) approaches infinity for 
rl =re  when the second order reduced density matrix P2 becomes exact. The 
integrated form (13) can easily be evaluated in a molecular orbital basis by 
introducing a new set of  two-electron integrals: 

Npqrs = / ~pp(1)~pq(1)~p~(1)q~(1) dV1. (15) 
d 



Dynamic correlation for MCSCF wave functions 381 

These integrals are also needed for the evaluation of the average density (7). 
They can be easily calculated using the formalism derived for calculations of  
two-electron integrals over Gaussian type functions [17, 18]. The same type of 
integrals were used by yon Niessen in a localization procedure for molecular 
orbitals [19]. 

The coefficients txoi and pi from the linear relation (8) for the atoms B, C, O, N, 
F, and Ne were used to determine the parameters x l - x s .  For B and C multi- 
configurational wave functions were used. The values of  the parameter  A obtained 
for these two atoms were used 0.026 and 0.029. Har t ree-Fock (or CASSCF for 
B and C) values for fi were used. It could be argued that this parameter  should 
be allowed to relax under the effect of  7/'eel, which would result in an iterative 
procedure for the calculation of the parameters Xl-Xs. Such a procedure would, 
however, lead to only very small changes in the computed values, since the effect 
of  ~e~ on fi is small. The values obtained for the universal parameters xl -x5  are 
as follows: 

xl =0.01256, 

x2 = -0.2293, 

x3 = 0.4991, 

x4 = 7.999, 

x5 = 0.6766. 

It is interesting to notice that the fitting procedure results in a value for x5 which 
is very close to the value 2/3, the value used by Colle and Salvetti [12], and is 
the value required using dimensionality arguments. The /~, z, values computed 
from Eqs. (9) and (10) are given by the small triangles in Fig. 1 for the atoms 
B-Ne,  illustrating the closeness of  these fitted/x, v values to the ideal values (the 
straight lines). 

The correlation energy for a number of  first row atoms, positive and negative 
ions was computed using these parameter  values. Extensive 2s, 2p basis sets were 
used in these calculations to avoid contamination of the results from basis set 
deficiencies. The resulting CASSCF and correlation energies are given in Table 
2. Note that for B, C, C +, and N + the quoted correlation energies are the energy 
differences with respect to the CASSCF energy (full valence MCSCF) and not 
to the SCF energy. The effective potential method seems to be able to reproduce 
the valence correlation energy to within 10% in most cases. However, even such 
a relatively small error can represent an appreciable amount  of  energy and can 
lead to sizeable errors in calculations of  energy differences. A first check can be 
obtained by using the results of  Table 3 to compute ionization potentials and 
electron affinities. Considerable improvement  is obtained compared to the 
CASSCF (SCF) values. The results, however, still differ from experiment with 
in some cases more than 0.7 eV. 

The method has also been tested in calculations on some small molecules. Basis 
sets of triple zeta quality plus two polarization functions on each centre were 
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Table 2. CASSCF and correlation energies for a number of first row atoms and ions 
(atomic units) 

Valence correlation energy a 
CASSCF 

Atom energy ~Vef r empirical b 

B(2p) -24.5663 -0.0374 -0.0367 
C(3p) -37.7075 -0.0772 -0.0791 
N(4S) -54.4007 -0.1297 -0.1270 
O(aP) -74.8110 -0.1915 -0.1855 
F(2p) -99.4099 -0.2635 -0.2494 
Ne(tS) -128.5464 -0.3470 -0.3178 
C+(2P) -37.3348 -0.0326 -0.0379 
N+(3P) -53.9103 -0.0852 -0.0830 
O§ -74.3723 -0.1410 -0.1237 
F+(aP) -98.8328 -0.2057 -0.1863 
Ne+(ZP) -127.8181 -0.3098 -0.2538 
C-(4S) -37.7074 -0.1144 -0.1204 
O-(2P) -74.7912 -0.2394 -0.2592 

F-(1S) -99.4554 -0.3191 -0.3306 

This correlation energy does not include the (2s)2~ (2p) 2 near degeneracy effect, 

which is included in the CASSCF energy 
b Estimated from the data given in [16] 

Table 3. Atomic ground state ionization potentials (IP) and electron affinities (EA) 

in eV 

Atom IP AlP EA AEA 

C CASSCF 10.14 -1.11 -0.002 -1.12 
~efr 11.36 0.11 1.01 -0.11 
Exp. 11.25 - -  1.12 w 

N CASSCF 13.34 -1.20 
~efr 14.56 0.02 
Exp. 14.54 a - -  

O CASSCF 11.94 -1.67 0.54 -0.93 
~e~r 13.31 -0.30 0.76 -0.71 
Exp. 13.61 a - -  1.47 b - -  

F CASSCF 15.71 -1.71 1.24 -2.21 
~ r 17.26 -0.16 2.75 -0.70 
Exp. 17.42 a - -  3.45 b - -  

Ne CASSCF 19.82 - 1.74 
~eer 20.83 -0.73 
Exp. 21.56 a - -  

a [ 2 0 ]  
b [21] 
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Table 4. Calculated bond lengths and dissociation energies for the molecules Hz, N2 
and 02 

383 

R~ (A) AR~ (A) De (eV) AD~ (eV) 

H~(IS~ +) CASSCF 0.755 0.014 4.13 -0.62 
"Veu 0.745 0.004 4.62 -0.13 
Exp. a 0.741 --  4.75 --  

N2(lye+) CASSCF 1.108 0.010 8.99 -0.92 
~ 1.099 0.001 10.42 0.51 
Exp. a 1.098 --  9.91 --  

O2(3s CASSCF 1.222 0.015 3.91 -1.30 
~ 1.198 0.009 4.73 -0.48 
Exp. a 1.207 --  5.21 --  

"[22] 

used. Again, full valence CASSCF calculations were performed with and without 
the effective correlation term in the Hamiltonian. Appropriate values for the 
parameters tz and v were obtained using the average of the average densities of 
the free atoms. The results are given in Table 4. A considerable improvement in 
computed bond distances and bond energies is obtained for all the three molecules 
studied. 

4. Conclusions 

This idea behind this work is simple and pragmatic: is it possible to devise an 
effective potential method, which accounts for the dynamic correlation effects, 
and which can be implemented into an MCSCF method without increasing the 
computational effort too much? The experience gained in the present first attempt 
to achieve this goal is positive. The effective potential employed is easily included 
into existing software, and the only additional computational step is the calcula- 
tion of the integrals (15). On the other hand the results obtained are not accurate 
enough to defend large scale applications of the method at the present stage. 

The most serious problem is the dependence of  the effective Hamiltonian on the 
electron density. In an LCAO framework it is not possible to let the parameters 
depend on the local density, which would lead to two-electron integrals that 
could only be computed numerically. The approach taken here to use an averaged 
density is, however, not entirely satisfactory, especially not in molecules. In the 
test examples used here (homonuclear diatomics) appropriate /x and v values 
could be obtained using averaged atomic densities. In heteronuclear systems such 
a simplified approach cannot be used. It is then necessary to extend the method 
such that different densities are used in different parts of the system. This may 
be achieved by a transformation of the molecular orbitals of a CASSCF wave 
function to localized orbitals, calculating effective atomic densities from these 
orbitals, and use these densities to construct an effective potential for each atomic 
centre. Only one centre contributions to the potential would be included in the 
energy expression. 
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W e  fee l  t h a t  t h e  p r e s e n t  w o r k  c a n  b e  u s e d  as  a s t a r t i n g  p o i n t  in  a s e a r c h  f o r  

s i m p l e ,  e m p i r i c a l ,  m e t h o d s  w h i c h  a c c o u n t s  f o r  t h e  s m a l l ,  b u t  c h e m i c a l l y  i m p o r -  

t a n t ,  d y n a m i c  c o r r e l a t i o n  effects  in  m o l e c u l a r  sy s t ems .  
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